Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes

نویسندگان

چکیده

This study focuses on obtaining regression models for material removal rate and tool wear in rough honing processes. For this purpose, experimental tests were carried out according to a central composite design of experiments. Five different parameters varied: grain size or particle abrasive, density abrasive concentration, pressure the stones against cylinder internal surface, tangential speed (in case, corresponding rotation cylinder), linear head. In addition, multi-objective optimization was with aim maximizing minimizing wear. The results show that, within range studied, depends mainly speed, followed by pressure. Tool is directly influenced pressure, size. According optimization, if two responses are given same importance, it recommended that high size, density, low be selected. Linear has less influence both studied. If considered more preponderant than wear, then values should considered, except preponderant, lower 128 (ISO 6106) selected, approximately 166 min−1. other variables, would not change significantly from first situation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on multi-objective nonlinear programming in optimization of the rough interval constraints

This paper deals with multi- objective nonlinear programming problem having rough intervals in the constraints. The problem is approached by taking maximum value range and minimum value range inequalities as constraints conditions, reduces it into two classical multi-objective nonlinear programming problems, called lower and upper approximation problems.  All of the lower and upper approximatio...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Evolutionary Rough Parallel Multi-Objective Optimization Algorithm

A hybrid unsupervised learning algorithm, which is termed as Parallel Rough-based Archived Multi-Objective Simulated Annealing (PARAMOSA), is proposed in this article. It comprises a judicious integration of the principles of the rough sets theory and the scalable distributed paradigm with the archived multi-objective simulated annealing approach. While the concept of boundary approximations of...

متن کامل

Effect of Cutting Parameters on Tool Wear, Surface Roughness and Material Removal Rate During Dry Turning of EN-31 Steel

ISBN 978-93-82338-21-5 | © 2012 Bonfring Abstract--The present paper is an experimental study to investigate the effect of cutting parameters (cutting speed, depth of cut and feed) on tool wear, surface roughness and material removal rate (MRR) during dry turning of EN-31 steel. Turning experiments were conducted with cutting speeds: 250, 300, 350 m/min, feeds: 0.15, 0.2, 0.25 mm/rev and depth ...

متن کامل

Optimization of Material Removal Rate in Electrical Discharge Machining Alloy on DIN1.2080 with the Neural Network and Genetic Algorithm

Electrical discharge machining process is one of the most Applicable methods in Non-traditional machining for Machining chip in Conduct electricity Piece that reaching to the Pieces that have good quality and high rate of machining chip is very important. Due to the rapid and widespread use of alloy DIN1.2080 in different industry such as Molding, lathe tools, reamer, broaching, cutting guillot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2022

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines10020083